EGI OpenIR  > 研究系统  > 荒漠环境研究室
基于站点的蒸散发影响因素分析及估算——以伊犁地区为例
李思思
学位类型硕士
导师李兰海
2016
学位授予单位中国科学院大学
学位授予地点北京
学位专业自然地理学
关键词蒸散发 伊犁地区 敏感性分析 通径分析 “蒸发互补”
摘要伊犁地区位居天山西部,受西风环流影响,加之“V”字形的地形特征,导致区内降水异常充沛,享有“西域湿岛”的美誉。在查阅大量文献的基础上发现对伊犁地区在气候变化背景下的蒸散发研究匮乏。为了探究伊犁地区的蒸散发,本文基于伊犁地区的8个气象站数据,探讨了在伊犁地区选取何种计算参考蒸散发方法最为恰当,而后分析了参考蒸散发和盘蒸发的时空变化特征。在参考蒸散发的时空变化基础上,结合贡献率和敏感性分析法探究了单个气象因子对参考蒸散发的影响,继而采用通径分析法研究了2个因子相互作用对参考蒸散发的影响。为了进一步深入明确伊犁地区蒸散发的变化情况,文章采用GLDAS (Global Land Data Assimilation System) 产品数据对所对应站点的实际蒸散发进行了提取,对实际蒸散发的时空变化特征进行了概述,继而分析探讨了潜在蒸散发、实际蒸散发、湿润条件下的蒸散发、盘蒸发、参考蒸散发五者的关系,明确了伊犁地区不同蒸散发之间的关系,本文得出结论如下: (1)伊犁地区,在仅有温度数据的情况下,可优先选用Irmak-Allen方法估算该地区的参考蒸散发。 (2)伊犁地区1964-2006年生长季内参考蒸散发在758.9~901.9 mm范围内波动,显著下降(P<0.01),于1985年左右发生突变。盘蒸发的下降趋势不显著。二者整体上都表现出3-4年和7-8年的短周期变化。参考蒸散发和盘蒸发皆以高海拔区域为中心形成极低值区,在低海拔偏西北区域形成高值区域。伊犁地区参考蒸散发和盘蒸发的空间分布相似性极高。 (3)相对贡献率分析表明,平均风速对伊犁地区参考蒸散发的变化贡献居第一,平均最高温度,日照时数和实际水汽压对参考蒸散发变化贡献次之,平均气温和平均最低气温贡献最小;在明确伊犁地区内部贡献率大小的区域差异时采用了实际贡献率分析法,在新源温度总体的升高和日照时数的增多对参考蒸散发增多的正贡献高于 风速减少和实际水汽压增高对参考蒸散发增多的负贡献。在察布查尔,风速的减少和实际水汽压的升高对参考蒸散发的减少效应削弱了温度和日照时数对参考蒸散发的正效应。虽然昭苏和察布查尔的参考蒸散发都表现出减少的趋势,但是两者内部机制略有相异。在昭苏站,日照时数的减少,实际水汽压的减少以及风速的增多引起参考蒸散发的减少效应超过了温度总体升高引起参考蒸散发的增多效应。 (4)伊犁地区参考蒸散对各气象要素的敏感性差异显著。从绝对值看,参考蒸散发对最高气温最为敏感,其次是水汽压、风速、日照时数,对最低气温和平均气温的敏感性最低。研究区内参考蒸散发对温度的敏感性表现为,温度每上升10%,参考蒸散发则增加7.7%。研究时段内伊犁地区温度呈上升趋势,但对应的参考蒸散发呈下降趋势,说明伊犁地区存在“蒸发悖论”。参考蒸散发对风速和日照时数表现为正敏感,对水汽压呈负敏感,研究时段内水汽压增高,风速和日照时数减少,其对参考蒸散发的减小效应掩盖了温度上升对参考蒸散发的增大效应,这是致使近42a伊犁地区参考蒸散发大体上下降的根源。 (5)通径分析表明,在伊犁地区单个气象因子(平均温度,风速,实际水汽压,日照时数)的直接效应并不能完全地表示伊犁地区参考蒸散发的变化,2个因子之间相互作用的间接通径对参考蒸散发变化的影响不可忽视。平均风速和平均温度不仅直接显著地影响到伊犁地区参考蒸散发的变化,并且在对参考蒸散发变化的间接效应中,二者也发挥了重要作用。 (6)伊犁地区蒸发皿蒸发量高于参考蒸散发量和潜在蒸散发量,潜在蒸散量略高于参考蒸散量,盘蒸发与参考蒸散发和潜在蒸散发高度相关,说明盘蒸发可以很好的预测潜在蒸散发和参考蒸散发;实际蒸散发在1964-2010年表现出显著上升趋势(P<0.05),M-K突变检验表明实际蒸散发序列的突变时间是1986年开始的,与参考蒸散发突变时间1985年大致重合。实际蒸散发的空间分布呈现出非地带性分布规律,由西北部以霍尔果斯为中心向东南方向以巩留为中心减小。伊犁地区实际蒸散发和潜在蒸散发的和与湿润条件下的蒸散发的比率仅有1.49,说明伊犁地区“蒸发互补”的存在,属于非对称型的蒸发互补。
其他摘要The region of Yili is located in the western part of Tianshan Mountains, northwest China. It is known as “ a wet island’ in arid region for abundant precipitation Under the context of climate change, it is thought provoking that what changes the evaporation would exhibit. Based on the meteorological data of the 8 stations and GLDAS Product, we conducted the study on the evaporation in Yili region. The main objevtives of this study are: (1) to test and select a most suitable method from candidate ones to calculate reference evapotranspiration (ETr) for the Yili region. (2) to examine the spatial and temporal patterns of ETr, pan evaporation (ETp) and actual evaporation(ETa). (3) to analyze the responses of ETr to the meteorological factors. (4) to clarify whether there exists Bouchet’s complementary relationship between potential evapotranspiration(ETo) and ETa in the Yili region. The present study showed that the method of Irmark-Allen can be satisfactorily used to calculate the ETr in the Yili region where the meteorological data lacked. ETr in the Yili region significantly decreased with a range from 758.9mm to 901.9mm and had a abrupt change in the year of 1985. ETp experienced a non-remarkable decreasing trend with a abrupt period from late 1980s to early 1990s. Both ETr and ETp varied with 3-4 years and 7-8 year cycles; Low ETr and pan evaporation values took place in mountainous regions, while high values were found at low elevations. Spatial distribution characteristics of ETr and pan evaporation were similar to each other. By relative contribution analysis, it found that average wind speed contributed the most to variation of ETr, followed by the average maximum temperature, sunshine duration and actual water vapor pressure, while the least contribution to the ETr were from average temperature and average minimum temperature. To explore the difference of actual contribution of various meteorological factors to ETr among the particular stations (Xinyuan station, Zhaosu station, Chabuchaer station), the method of actual contribution analysis was used. In Xinyuan station, the positive contributions of increasing temperature and growing sunshine duration to the increasing ETr were higher than the negative contributions of decreasing wind speed and rising actual water vapor pressure. In Chabuchaer station, the positive contributions of decreasing wind speed and increasing actual water vapor pressure to the decreasing ETr were more than the negative contributions of increasing temperature and rising sunshine duration. In Zhaosu station, the positive contributions of increasing wind speed and decreasing actual water vapor pressure to the decreasing ETr exceeded the negative contributions of increasing temperature and rising sunshine duration. Even though the trends of ETr in Zhaosu and Chabuchaer were both decreasing, the mechanism for contributions of meteorological factors to ETr were discriminating. Sensitivity analysis found that ETr was most sensitive to maximum average temperature, followed by vapor pressure, sunshine duration and average wind speed, with the lowest sensitivity to average temperature and minimum temperature across the Yili region. If the temperature rise by 7%, ETr would increase by 7.7%. In the study period, the temperature showed increasing trends, but the ETr experienced a decreasing trend, resulting in the existence of “pan evaporation paradox” in the region. The increasing effect of temperature on ETo was cancelled by the decreasing impact of the changes in vapor pressure, average speed and sunshine hours, which resulted in an overall decrease in ETo during the study period. According to the path analysis, the variations of ETr in the Yili region cannot be fully explained by the direct effect of a single factor. Due to the existence of the interactions among meteorological factors, one meteorological factor might influence ETr through another one with an indirect path. One meteorological factor with a little direct effect on the ETr may interact with another factor, which significantly influences on it through an indirect path. The results demonstrated that average wind speed and average temperature not only directly influence the variation of ETr, but also indirectly affect the variation of ETr through interacting with other factors. ETr is lower than ETp and ETo, and ETp is higher than ETo. However, these three had a high correlation coefficient of over 0.9, respectively. As a conclusion, ETp can be used to forecast ETo and ETr; The results indicated that ETa experienced an increasing trend with a 10.8 mm/10 years during the study period, and an abrupt change was detected in 1986 according to the Mann-Kendall trend test. The spatial distribution of ETa presents a zonal distribution that it gradually decreased from Northwest to Southeast in the Yili region. ETo was close to wet environment evapotranspiration (ETw), while ETa was far from ETw. The ratio of ETa+ETo to ETw was only about 1.49, far less than 2.0, implying that there was a complementary relationship in the Yili region, but it belonged to unsymmetrical complementary relationship.
学科领域自然地理学
语种中文
文献类型学位论文
条目标识符http://ir.xjlas.org/handle/365004/14711
专题研究系统_荒漠环境研究室
作者单位中科院新疆生态与地理研究所
推荐引用方式
GB/T 7714
李思思. 基于站点的蒸散发影响因素分析及估算——以伊犁地区为例[D]. 北京. 中国科学院大学,2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李思思]的文章
百度学术
百度学术中相似的文章
[李思思]的文章
必应学术
必应学术中相似的文章
[李思思]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。