EGI OpenIR
未来气候变化对塔吉克斯坦南部主要农作物水足迹的影响
Alternative TitleEffect of Future Climate Change on Water Footprint of Major Crops in Southern Tajikistan
Muhammadjon Kobuliev
Subtype硕士
Thesis Advisor刘铁(Liu Tie)
2020-06-30
Degree Grantor中国科学院大学
Place of Conferral北京
Degree Discipline理学硕士
Keyword气候变化 半干旱区域 水足迹 适应力 塔吉克斯坦南部 Climate Change Semi-arid area Water Footprint Adaptation Southern Tajikistan
AbstractIPCC 气候模式表明中亚地区未来将明显变暖,并面临更加频繁的干旱和高温事件。气候变化将对农业、生物多样性、人类健康、生态环境以及整体经济产生深远影响。因此,气候变化变化引起的诸如在极端事件(例如干旱和洪水)加剧了全球和区域中水文、气象和生态等方面的一系列的不确定性。根据脆弱性指数分析显示,作为山地国家的塔吉克斯坦适应气候变化的能力很差,是欧洲和中亚地区中适应气候变化的能力最差的国家之一。塔吉克斯坦人口不足 700 万,是中亚地区最贫穷的国家,国际农业发展基金会(IFAD)的数据显示,一半以上人口仍属贫困,且 80%的贫困人口生活在农村地区。虽然一半以上的人口以农业为生,农业占 GDP 的 20%以上,而且塔吉克斯坦高度依赖粮食进口,极易受到外部大环境的影响。塔吉克斯坦的粮食危机和粮食安全,受到了该国和世界组织的高度重视,都强调农业部门在消除贫困、实现农村发展和保障粮食安全方面的重要地位。因此,在气候变化的影响下,农业和粮食生产直接受到温度、降雨和二氧化碳等气象要素和水、热或土壤等下垫面变化的影响。因此,气候是农业生产力、国家粮食安全和经济可持续发展的主要决定因素之一。定量预测塔吉克斯坦未来气候变化对其农业生产的影响,是科学调整农业政策的重要科学支撑。苏联在乌兹别克斯坦、土库曼斯坦、塔吉克斯坦和吉尔吉斯斯坦建立了棉花产区,如今,棉花依然是重要的经济作物,但地方政府也逐步加大粮食的产量,以减少进口已成为它们的当务之急。棉花种植面积逐步减少,冬小麦面积翻了一番。在塔吉克斯坦,小麦是成为需水量最大的作物,占农业用水总量(蓝水和绿水)的 39%,其次是棉花,占 33%。塔吉克斯坦绿水和蓝水资源的可利用性存在巨大的区域差异,该地区的虚拟水的科学调配是进行地区间水资源科学分配的重要方法之一。 因此,本项聚焦塔吉克斯坦主要农业区(南部哈特隆地区中 Danghara),研究主要通过统计降尺度方法阐明当地温度和降雨的气候变化趋势,量化区域内主要作物水的足迹,估算气候变化对未来不同阶段下主要粮食作物生长期的影响,确定适应气候变化下的最佳播种日期,优化未来主要作物的需水量。本项研究基于 31 年的历史温度和降水数据,使用使用统计降尺度法(SDSM),验证和校准了 CanESM2 全球气候模型(GCM)历史数据,并分析的三种典型浓度路径(RCP)在两个未来时间跨度(2021-2050 年、 2051-2080 年) Danghara 地区可能的未来气候变化趋势。针对棉花、土豆和冬小麦三种主要农作物,计算了历史和未来不同时段下的主要作物的作物需水量,量化了主要农作物的水足迹作,并通过优选最佳播种期(OSD)以减少未来农作物的需水量对于当地/区域水资源配给压力。结果表明:(1)对于全球气候模式的三个预测变量(最大温度、最小温度和降雨),降尺度模型校准和验证取得了较好的结果,其评价参数 R2、 DW 和 RMSE 分别为 0.5 - 0.9、 1.4 - 1.9 和 1.5 - 2.6 之间。对于两个未来时期(2021-2050 年和2051-2080 年),在三种排放情景(RCP 2.6、 4.5 和 8.5)下,最高温度和最低温度均呈上升趋势。在第一阶段(2021-2050 年),三种情景(RCP 2.6、 4.5和 8.5)的年均最高温度升温幅度分别为 0.35°C, 0.40°C 和 0.61°C,年均最低温度分别增长 0.23°C, 0.27°C和 0.39°C;与历史降雨数据相比,未来降雨的增幅达到 8.42%、 7.96%和 10.78%。在第二阶段(2051-2080 年)升温幅度将更大,三种情景(RCP 2.6、 4.5和 8.5)下,年度最高温度将升温 0.51°C, 0.70°C和 1.26°C,年度最低温度分别提高 0.34°C, 0.46°C 和 0.93°;未来降雨增幅将达到 10.89%、 10.77%和 8.92%。(2)未来降水和温度的增加将导致现有生长期的主要农作物水足迹的增加,这主要是由于长期以来其绿水和 2051-2080 年内蓝水减少(棉花除外),其他组分保持相对稳定。在未来三种情景下(RCP 2.6、 4.5 和 8.5),棉花的绿水量在 2021-2050 年将分别增长 4.3%, 7.8%和 7.1%,在 2051-2080 年将分别增长 7.1%, 7.4%和 7.2%。马铃薯的绿水在未来第一阶段将分别增长 5.3%, 6.9%和 7.4%,在未来第二阶段分别增长 9.6%, 10.1%和 7.5%。而冬小麦的绿水增加幅度最大,未来第一阶段,其增加量为 7.5%, 8.7%, 9.2%,在未来第二阶段的增幅为 10.6%, 11%和 9.3%。与绿水不同,蓝水并没有呈现整体上升的趋势。未来第一阶段的马铃薯和未来两个阶段内的冬小麦的灌溉需求将大大减少。但就棉花而言,蓝水组分还是略有增加,在未来第一阶段将分别增加 1.4%, 0.9%和 1.5%,在未来第二阶段将分别增加 1%, 1.2%和 2.3%。(3)将水足迹的变化与气候变化情景综合分析,可以看出,冬小麦和秋马铃薯将在生长期获得更多降雨。另一方面,尽管每年降雨量都在增加,但由于棉花生命周期主要发生在塔吉克斯坦的旱季,棉花灌溉用水在旱季中的需水矛盾同样在增加。由于作物物候对作物需水量和生产力的有着决定性的影响,因此,在生长期有效降雨量将决定着灌溉需求的变化。于是,在未来第一阶段 RCP 4.5 和 RCP 8.5 情景下,有效降雨量的稳定增加将导致冬季小麦的灌溉需求相对降低;在未来第二阶段,除 RCP8.5 之外,所有情景下小麦和马铃薯的灌溉需求都会下降。在两个研究阶段的三个情景下,将提前十天播种定义为最佳播种期,马铃薯和冬小麦的水足迹分别从 1.1%升至 1.4%, 2.9%升至3.4%。尽管最佳播种期显示棉花的水足迹保持稳定增长,但同时灌溉需求或蓝水明显下降。在 2021-2050 年,棉花、马铃薯和小麦的有效降雨量分别由13.3%增长至 14.4%, 10.5%至 12.1%和 9.4%至 11.2%; 2051-2080 年中三个情景下棉花的有效降雨量增长量分别为 13.2 至 15%, 12.4 至 14.9 %,和 11.3至 12.5%。有效降雨量的稳定增加导致所有作物的灌溉需求量相对降低(除了2051-2080 年期间的 RCP 8.5 下的棉花)。我们的研究结果将有助于灌溉系统新策略的制定,以及在满足环境用水和人类需求的水-食物之间取得平衡。综合的水资源管理政策是确保可持续性发展和公平分配水资源的重要措施。同时,发展耐热物种可能是塔吉克斯坦农业发展的另一个机会,特别是在南部地区。因此,我们建议政府改善农业基础设施并为农民提供培训。此外,出色的选种,滴灌,覆膜和轮作也可以大大增加作物产量。这项研究选择了一个气候观测站模拟未来的气候变化,并基于作物需水量和灌溉用水估算了主要农作物的水足迹,由于气象观测站的数量限制,以及选取 GCM 模式数量的限制,存在未来气候变化趋势分析的不确定性,在未来研究中,可以增加其他相关数据源和气候模式集合, 以减少趋势分析的不确定性;同时由于塔吉克斯坦南部土地利用数据的精度较低,灌溉面积和农作物结构存在一定不确定性,期望在以后的工作中对此进行改进。
Other AbstractThe IPCC climate model indicates that Central Asia will become significantlywarmer in the future and face more frequent drought and high temperature events.Climate change will have a profound impact on agriculture, biodiversity, humanhealth, the ecological environment and the overall economy. As a result, climatechange changes such as extreme events (such as droughts and floods) haveexacerbated a series of uncertainties in global and regional hydrology, meteorology,and ecology. According to the vulnerability index analysis, Tajikistan, as amountainous country, has poor ability to adapt to climate change and is one of thecountries with the weakest ability to adapt to climate change in Europe and CentralAsia. Tajikistan has a population of less than 7 million and is the poorest country inCentral Asia. According to data from the International Fund for AgriculturalDevelopment (IFAD), more than half of the population is still poor, and 80% of thepoor live in rural areas. Although more than half of the population depends onagriculture for agriculture, which accounts for more than 20% of GDP, and Tajikistanis highly dependent on food imports and is highly susceptible to the externalenvironment. Tajikistan ’s food crisis and food security are highly valued by thecountry and the world organizations, and both emphasize the important position ofthe agricultural sector in eradicating poverty, achieving rural development, andensuring food security. Therefore, under the influence of climate change, agricultureand food production are directly affected by changes in meteorological elements suchas temperature, rainfall and carbon dioxide, and changes in underlying surfaces suchas water, heat or soil. Therefore, climate is one of the main determinants ofagricultural productivity, national food security and sustainable economicdevelopment. Quantitatively predicting the impact of future climate change inTajikistan on its agricultural production is an important scientific support for scientificadjustment of agricultural policies.The Soviet Union established cotton producing areas in Uzbekistan,Turkmenistan, Tajikistan, and Kyrgyzstan. Today, cotton is still an important cash crop, but local governments have gradually increased grain output to reduce imports.This has become their top priority. The area under cotton has gradually decreased,and the area of winter wheat has doubled. In Tajikistan, wheat is the crop with thehighest water demand, accounting for 39% of total agricultural water use (blue andgreen water), followed by cotton, which accounts for 33%. There is a huge regionaldifference in the availability of green and blue water resources in Tajikistan. Thescientific allocation of virtual water in this region is one of the important methods forscientific allocation of water resources between regions. Therefore, this projectfocuses on the main agricultural regions of Tajikistan (Danghara in the southernKhatlon region). The study mainly uses statistical downscaling methods to clarify theclimate change trends of local temperature and rainfall, quantify the footprint of themain crop water in the region, and estimate The impact of the growth period of majorfood crops at different stages in the future, to determine the best sowing date to adaptto climate change, and to optimize the water demand of major crops in the future.This study is based on 31 years of historical temperature and precipitationdata, using statistical downscaling (SDSM), to verify and calibrate the historical dataof the CanESM2 Global Climate Model (GCM), and analyze the three typicalconcentration paths (RCP) in two The future time span (2021-2050, 2051-2080) is thepossible future climate change trend in the Danghara area. For the three main cropsof cotton, potatoes and winter wheat, the crop water requirements of the main cropsin different periods in history and in the future are calculated, the water footprint ofthe main crops is quantified, and future crops are reduced by optimizing the optimalseeding period (OSD) The water demand for local / regional water allocation pressure.the result shows:(1) For the three predictors of the global climate model (maximum temperature,minimum temperature and rainfall), the calibration and verification of thedownscaling model yielded good results. The evaluation parameters R2, DW andRMSE were 0.5-0.9 and 1.4, respectively. -Between 1.9 and 1.5-2.6. For the twofuture periods (2021-2050 and 2051-2080), under the three emission scenarios (RCP2.6, 4.5 and 8.5), the maximum temperature and the minimum temperature bothshowed an upward trend. In the first stage (2021-2050), the annual average maximum temperature increase of the three scenarios (RCP 2.6, 4.5 and 8.5) were 0.35 ° C, 0.40° C and 0.61 ° C, respectively, and the average annual minimum temperature increasedby 0.23 ° C, 0.27 ° C, and 0.39 ° C; compared with historical rainfall data, futurerainfall increases will reach 8.42%, 7.96%, and 10.78%. In the second phase (2051-2080), the temperature increase will be greater. Under the three scenarios (RCP 2.6,4.5, and 8.5), the annual maximum temperature will increase by 0.51 ° C, 0.70 ° C,and 1.26 ° C. Increased by 0.34 ° C, 0.46 ° C and 0.93 °; future rainfall increases willreach 10.89%, 10.77% and 8.92%;(2) The increase in precipitation and temperature in the future will lead to an increasein the water footprint of the main crops in the current growth period. This is mainlydue to the long-term reduction in green water and blue water in 2051-2080 (exceptfor cotton), and other components remain relatively stable. Under the next threescenarios (RCP 2.6, 4.5, and 8.5), the green water volume of cotton will increase by4.3%, 7.8%, and 7.1% in 2021-2050, and will increase by 7.1%, 7.4%, and 2051-2080, respectively. 7.2%. The green water of potatoes will increase by 5.3%, 6.9%and 7.4% in the first phase in the future, and increase by 9.6%, 10.1% and 7.5% inthe second phase in the future. Winter wheat has the largest increase in green water.In the first phase of the future, the increase will be 7.5%, 8.7%, 9.2%, and in thesecond phase of the future, the increases will be 10.6%, 11%, and 9.3%. Unlike greenwater, blue water does not show an overall upward trend. The irrigation demand forpotatoes in the first stage of the future and winter wheat in the next two stages will begreatly reduced. But as far as cotton is concerned, the blue water component is stillslightly increased. In the first phase of the future, it will increase by 1.4%, 0.9%, and1.5%, respectively, and in the second phase of the future, it will increase by 1%, 1.2%,and 2.3%, respectively;(3) By comprehensively analyzing the changes in water footprint and climate changescenarios, it can be seen that winter wheat and autumn potatoes will receive morerainfall during the growing period. On the other hand, although the annual rainfall isincreasing, because the cotton life cycle mainly occurs in the dry season of Tajikistan,the contradiction between the demand for cotton irrigation water during the dry seasonis also increasing. Because crop phenology has a decisive impact on crop water demand and productivity, effective rainfall during the growing season will determinechanges in irrigation demand. Therefore, under the scenarios of RCP 4.5 and RCP 8.5in the first phase of the future, the steady increase in effective rainfall will result in arelatively low irrigation demand for winter wheat; in the second phase of the future,except for RCP 8.5, wheat and potatoes under all scenarios Demand for irrigation willfall. In the three scenarios of the two research stages, the ten-day advance plantingwas defined as the optimal planting period, and the water footprints of potato andwinter wheat rose from 1.1% to 1.4%, 2.9% to 3.4%, respectively. Although theoptimal sowing period shows that the cotton's water footprint has maintained steadygrowth, at the same time irrigation demand or blue water has declined significantly.In 2021-2050, the effective rainfall of cotton, potato and wheat increased from 13.3%to 14.4%, 10.5% to 12.1% and 9.4% to 11.2% respectively; the effective rainfall ofcotton under three scenarios in 2051-2080 The increases were 13.2 to 15%, 12.4 to14.9%, and 11.3 to 12.5%. The steady increase in effective rainfall has led to arelatively low irrigation demand for all crops (except for cotton under RCP 8.5between 2051 and 2080).The results of our research will help to formulate new strategies for irrigationsystems and to strike a balance between environmental water use and water-food thatmeets human needs. An integrated water resource management policy is an importantmeasure to ensure sustainable development and equitable distribution of waterresources. At the same time, the development of heat-resistant species may be anotheropportunity for agricultural development in Tajikistan, especially in the southernregions. Therefore, we recommend that the government improve agriculturalinfrastructure and provide training for farmers. In addition, excellent seed selection,drip irrigation, mulching and rotation can also greatly increase crop yields. This studyselected a climate observatory to simulate future climate change, and estimated thewater footprint of major crops based on crop water demand and irrigation water. Dueto the number of meteorological observation stations and the number of GCM modelsselected, there is a future climate The uncertainty of change trend analysis, in futureresearch, other relevant data sources and climate model collections can be added toreduce the uncertainty of trend analysis; meanwhile, due to the low accuracy of land use data in southern Tajikistan, the irrigated area and crops. There is a certain degreeof uncertainty in the structure, and it is expected to improve this in future work.
Subject Area生态学
Language英语
Document Type学位论文
Identifierhttp://ir.xjlas.org/handle/365004/15395
Collection中国科学院新疆生态与地理研究所
研究系统
Affiliation中国科学院新疆生态与地理研究所
First Author Affilication中国科学院新疆生态与地理研究所
Recommended Citation
GB/T 7714
Muhammadjon Kobuliev. 未来气候变化对塔吉克斯坦南部主要农作物水足迹的影响[D]. 北京. 中国科学院大学,2020.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Muhammadjon Kobuliev]'s Articles
Baidu academic
Similar articles in Baidu academic
[Muhammadjon Kobuliev]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Muhammadjon Kobuliev]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.