EGI OpenIR
气候变化对奇尔奇克河流域土壤侵蚀能力的影响研究
Alternative TitleIMPACT OF CLIMATE CHANGE ON THE EROSION CAPACITY IN THE CHIRCHIK RIVER BASIN
KHUSEN SHIRINOVICH GAFFOROV
Subtype博士
Thesis Advisor包安明(BAO ANMING)
2020-05-26
Degree Grantor中国科学院大学
Place of Conferral北京
Degree Discipline理学博士
Keyword塔什干奇尔奇克河流域(CHAB) 气候变化 沉淀 修订的通用土壤流失方程(RUSLE) 降雨侵蚀 水土流失 通用气候模式(GCM) 代表性集中途径(RCP) 土地用途变化 CA_MARKOV 土地变化建模师(LCM) TerrSet(IDRISI) 河流径流 Tashkent Chirchik River basin (CHAB) Climate change Precipitation Revised Universal Soil Loss Equation (RUSLE) Precipitation Rainfall erosivity Soil erosion Sedimentation General Climate Model (GCM) Representative Concentration Pathways (RCPs) Land Use change CA_MARKOV Land Change Modeler (LCM) TerrSet (IDRISI) River-Runoff
Abstract21 世纪可持续发展面临着世界人口过度增长的严峻挑战。不可再生的土地资源作为人类活动的基础,随着农业发展价值急剧增加。为满足对土地资源日益增长的需求,人类大量消耗水资源开发新土地,导致了植被覆盖度的减少、森林的丧失、肥沃土壤的侵蚀, 以及水文过程的急剧变化。奇尔奇克河流域 (CHAB) 位于乌兹别克斯坦东北部, 在天山山脉西部与锡尔河之间,面积为 15300 平方公里,被确定为农业可持续发展区域。然而该地区土地开发中,发生了土壤侵蚀过程。塔什干地区的大部分区域为山麓平原。在北部和东北部,西天山的山脊海拔高达 4299 m。季节性降水和冰川融化在山区生态系统中发挥着重要作用, 同时为下游地区提供了重要的水资源。研究表明,土壤侵蚀问题主要由降雨频率增加、土地覆盖和土地利用动态变化以及地区水资源管理不当引起。对于山区的大多数水文过程(例如水土流失、沉积、水平衡等, 必须精确计算降水频率的变化。在山区,由于地形的复杂性,利用雨量计准确测量获得降水或降雨量数据较为困难。但是,卫星遥感数据产品可用作评估该地区降雨量的替代数据源。因此,基于降水频率数据产品可预测未来土壤侵蚀和未来河流流量变化。土地利用变化的分析和评估可为可持续农业管理提供决策参考。气候引起的降雨频率变化可影响土地资源质量, 进而导致土地退化。博士学位论文包括了以下几个方面研究:(1)气候变化背景下降雨强度变化对土壤侵蚀的影响;(2)未来情景,预测奇尔奇克河流域未来土地利用变化;(3)奇尔奇克河流域未来气候预测及其对河流径流的影响。本研究选取了三个未来情景: 2030 年代(2020-2039)、 2050 年代(2040-2069)和 2070s(2060-2099),分别开展了试验研究。(1) 将经过修正的通用土壤流失方程(RUSLE)模型与降雨数据相结合,应用于 CHAB,其中降水是土壤侵蚀能力和河流流量增加的主要贡献者。 RUSLE模型用于检验 CHAB 在评估土壤侵蚀能力上的效果,同时以分析气候变化下未来土壤侵蚀量的时空变化。降雨侵蚀力(R)可用于确定降水的侵蚀性, RUSLE 可确定侵蚀性变化的影响。基于 1990-2016 年期间 10 个气象站的观测数据来验证GCM 和侵蚀模型。根据从乌兹别克斯坦水文气象服务中心收集的逐日观测数据,月均降水量和年均降水量(1990-2016 年)验证 R 因子的有效性。通过对比基准年气候数据(1975-2005 年)和观测数据,对模型的有效性进行统计评估。通过泰勒图比较 10 个站点的观测数据,相关系数(CC)高达 0.98% (图 3a),均方根(RMSE)为 659 Mj·mm·ha-1h-1yr-1,纳什-舒特克里因系数(NASH)为0.75。根据观测实测数据(1990 年至 2016 年),年均降雨量为 3085 毫米,主要分布在该地区的西北部和中部,一般来说在流域的南部、西南部和流域下游的降水最少。土壤有机物越多抗侵蚀能力就越强。流域土壤主要为沙土 8.9%、粉砂 29.9%、粘土 36.8%。潜在土壤退化中,危险因素(%) LS 值坡度类别(<5、 5-20、 21-40、 41-70 和> 70 ),较高值在最高 4299 m 的山顶处。因此,从基准气候到 GCM 气候模式下的年降雨侵蚀力的有增长的趋势,同时与基准相比, 1975 年, 2050 年代和 2070 年代的年平均降雨侵蚀力分别呈现出 11.8%,14.1%, 16.3 的增加。(1975-2005)。尽管在 GISS-E2-R 模型上降雨和降雨侵蚀力与两个 RCP 的基线气候相比分别降低了约 31%和 32%,但平均侵蚀量却比基线最大值(18.8%)有所增加。总体而言,从 2030 年代到 2070,大多数模型显示的平均侵蚀量都有所增加。虽然 GCM 模型模拟的结果表明平均侵蚀量都有所增加,但在某些模型中,与基准气候相比,在 2030 年, 2050 年,年均土壤流失,侵蚀力密度和降雨活动有却所减少,而且彼此之间没有关联。 2070 年与基本气候相比,在所有情景下所有气候模式的累积平均年降雨量和侵蚀量均显示出稳定的增长。(2) 土地覆盖变化会对其他类型的环境指标产生影响,一直是自然资源和生态研究领域关注的热点和焦点。在相关研究中, CA_MARKOV-元胞自动机方法是模拟土地利用变化的重要方法,该方法是借助 TerrSet(IDRISI)软件中的 Land Change Modeler(LCM)模块实现的,设计的初衷就是利用土地使用的经验和潜在转换模型进行土地覆盖变化的监测。在乌兹别克斯坦塔什干地区,利用 1990 年至 2015 年和 1995 年至 2015 年土地利用变化,分别绘制 2075 年和2100 年的未来土地利用图,动态显示土地利用变化扩张过程。土地利用图显示,土地利用变化主要发生在耕地上,耕地面积的扩张范围影响到了草地面积,森林面积也有着显着减少,这意味着退缩的森林面积转变为其他土地利用类型,其他土地用途也在扩大。气候变化也是导致水资源短缺的最有可能的原因。(3) 农业可持续性管理的方法不仅需要流域内土地侵蚀和土地利用变化的分析,而且需要对河道径流变化进行调查和评估。结合三个时期的 GCM 数据估算未来的河流径流量。 RCPs 的预测结果表明,径流量在最近的十年内呈现增加趋势,之后减少,然后再次增加,这成为土地侵蚀能力稳定增长的有力证据。分析表明,在 RCP 4.5 情景中,沉积范围分别达到 1.0x105- 4. 0x105。与 RCP4.5 相比, RCP 8.5 略有降低,每种型号的沉降范围分别为 1.0x105-3.5x105。因此,这些结果可用于防止由高强度或者高频率降雨引发的水土流失,为农业和水资源管理的可持续发展具有战略意义,同时降低水体沉积物水体的脆弱性,例如 Charvak 水库。未来的气候变化可能与这些假设存在一定的差异,尤其是在包括 CHAB 在内的地区,这些数据也有助于预测塔什干地区径流的季节性变化,也有可能成为气候变化的预测指标。
Other AbstractThe increase in the global population has become the biggest challenge forsustainable development in the 21st century. With the advent of agriculture, the valueof soil has increased dramatically in people's lives, since land resources are one of thebasis and non-renewable resources for human development. As a result of thedevelopment of new lands for human needs and the irregular use of available waterresources, this led to a reduction in land cover, loss of forests and erosion of fertilesoil, as well as to sharp changes in hydrological processes in the river basins. Theacceleration of erosion as a result of human activities has caused anthropogenicimpacts on the soil, nearly 36 billion tons of soil is eroded each year, which isfacilitated by deforestation and land misuse.Chirchik River basin (CHAB) which determines sustainable agriculture in theTashkent region located in the north-east of Uzbekistan between the western part ofthe Tien Shan mountains and the Syr Darya River in a semi-arid zone that suffersfrom uneven distribution of water resources, which in itself forms an erosion processwhile satisfying land demand. Its area is 15 300 km². Most of the territory of theTashkent region is the foothill plain. In the north and northeast, there are ridges of theWestern Tien Shan up to 4299 m high. Seasonal precipitation and melting of glaciersplay an important role in the mountain ecosystem, providing water for manydownstream communities. Among the issues raised are soil erosion due to an in theprecipitation frequency change, landcover and land-use dynamics in modelingagricultural sustainability, and the most important factor in water management in theregion. Accuracy calculation of changes in the frequency of precipitation is necessaryfor most hydrological processes (like soil erosion, sedimentation, water balance, etc.)in mountainous areas. In mountainous regions, from the complexity of the relief,measuring accurate precipitation data or finding data on the amount of rainfall fromrain gauges makes the modeling process difficult. However, satellite products can beused as an alternative data source for estimating rainfall in these areas. Therefore, theimportance of measuring the frequency of precipitation and makes it possible topredict future soil erosion and future river-runoff changes. Analyzes and assessmentsof changes in land use allow you to make a quick decision in managing long-termagriculture.Changes in the frequency or intensity of precipitation due to climate alwaysaffect the conservation of soil resources, which leads to land degradation. The studyarea of this Ph.D. thesis included the entire project: 1) impact of changes in rainfallintensity on soil erosion in the context of climate variability; 2) future land-usechange projection in the Chirchik River basin with a future perspective; 3) futureclimate projection in the Chirchik River basin and their impact on river-runoff. Thestudy had three series of experiments for the future periods of the 2030s (2020-2039),2050s (2040-2069) and 2070s (2060-2099).(1) The Revised Universal Soil Loss Equation (RUSLE) model combined withrainfall was applied to the CHAB, where precipitation is the major contributor to theerosion capacity and river flow. RUSLE applied to evaluate the performance in thesoil erosion capacity of the CHAB in response to climate change on future erosionvolume both space and time. The rainfall erosivity (R) was used to determine theerosiveness of precipitation, and RUSLE itself determined the effects of changes inerosiveness. Ten weather stations observational data for a period from 1990 to 2016are used to validate the General Circulation Models (GCM) and erosion model. Thevalidity of the derivation of R factor was derived from mean monthly rainfall andaverage annual precipitation (1990-2016), on the daily observational data collectedfrom the Center for Hydrometeorological Service of the Republic of Uzbekistan(Uzhydromet). As sources of future meteorological data, we obtained dailyprecipitation outputs from five GCMs in the Coupled Model Inter-comparison ProjectPhase 5 (CMIP5) archive. Spatiotemporal variability of erosivity depending onprecipitation using the rainfall erosivity (R) of RUSLE under the scenarios globalcirculation models in the CHAB, the northeastern part of the Republic of Uzbekistan,was used from GCM dataset was classified by the CMIP5 model, and as the scenarioswere employed, Representative Concentration Paths (RCP) 4.5 and 8.5 werestatistically downscaled by the delta method during the period of the 2030s, 2050s,and 2070s. He validity of the model was evaluated statistically, by comparison usingthe baseline climate data (1975-2005) and observation data where the Taylor diagramsused for compared with the observational data for all 10 stations, when correlationcoefficient (CC) of about 0.98%, the root means square error (RMSE) 659Mj·mm·ha−1h−1yr−1, Nash-Sutcliffe coeffcient (NASH) 0.75. According toobservations (1990-2016), which corresponds to the north-western and middle partsof the basin. As a rule, the least amount of precipitation is observed downstream of the basin in the south and southwest of the basin. Soils with a large amount of organicmatter are highly resistant to erosion. Soils in the basin show sand 8.9%, silt 29.9%,clay 36.8%. Potential soil degradation, risk factor (%) LS values of slope categories(<5, 5-20, 21-40, 41-70, > 70) are tied to the tops up to 4299 m high. As a result,growing trends in annual rainfall erosivity from the base climate to GCMs, show apositive change in average annual rainfall erosivity in 11.8%, 14.1%, 16.3% in the2030s, 2050s, and 2070s, respectively compared to the baseline (1975 - 2005).Despite a decline in rainfall-runoff erosivity on the GISS-E2-R model of about -31%,-32% from the baseline climate for both RCPs respectively, while there is an increasein average erosion from the baseline maximum 18.8%. Overall, there is an increase inthe average erosion for most of the model ensembles from the 2030s through the2070s period respectively. Despite the increase in the average value in all GCMs,when compared with the baseline climate in some models, average annual soil loss,erosivity density, and rainfall activity had decreased with small values that wereincompatible with each other, in the 2030s, 2050s, and 2070s respectively. Thecumulative, average annual rainfall intensity and erosion to all climate modelsrespectively with all scenarios show steady growth compared to the base climate.(2) Changes in land cover in land use affect all types of other environmentalindicators and have always been of great concern to specialists engaged in naturalresources and ecology. In this study, The CA_MARKOV - Cellular Automata methodis used to simulate changes in land use using was implemented using Land ChangeModeler (LCM) in the software TerrSet (IDRISI), which is designed as an empiricaland transition potential model, for land use and land cover changes are monitoring.Given the changes in land use from 1990 to 2015 and from 1995 to 2015, a map offuture land use for 2075 and 2100 years was compiled in the Tashkent region, of theRepublic of Uzbekistan. The main changes occurred happening in agriculture andbuilt-up lands, and how their territory is expanding. Besides, the expansion extends tograssland, however at this time the area of forests is significantly reduced, and thismeans that other land uses are expanding due to forest reduction. In water resources,mail change is not displayed, it may be due to climate change.(3) The paradigm of agricultural sustainability management requires coupledanalysis not only erosion process and land-use change in a river basin region,investigation and assessment of river-runoff changes also play a very important role.The future river runoff is also estimated in combination with two RCPs of GCM archive for the three periods. The results of RCPs revealed that future predicted flowsare increasing the nearest ten years and then decrease, and then again increasing and itprovides strong evidence of erosion capacity growing steadily. Analyzes express, thatin the RCP 4.5 scenarios sedimentation range reached 1.0x105-4.0x105, respectively.The RCP 8.5 a slight reduction compared with the RCP 4.5, and the sedimentationrange shows 1.0x105-3.5x105 for each model, respectively.Thus, these results can be used to prevent soil erosion due to variabilityfrequency or intensity change of precipitation, to develop agricultural sustainabilityand strategies for future sustainable water management in the Tashkent region, whileat the same time combating vulnerability from suspended sediments in water bodies,such as the Charvak reservoir. Future climate change may differ from thesehypotheses, especially in other regions, including the CHAB, these data also help inpredicting seasonal runoff in the Tashkent region as a possible predictor of climatechange.
Subject Area地图学与地理信息系统
Language英语
Document Type学位论文
Identifierhttp://ir.xjlas.org/handle/365004/15399
Collection中国科学院新疆生态与地理研究所
研究系统
Affiliation中国科学院新疆生态与地理研究所
First Author Affilication中国科学院新疆生态与地理研究所
Recommended Citation
GB/T 7714
KHUSEN SHIRINOVICH GAFFOROV. 气候变化对奇尔奇克河流域土壤侵蚀能力的影响研究[D]. 北京. 中国科学院大学,2020.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[KHUSEN SHIRINOVICH GAFFOROV]'s Articles
Baidu academic
Similar articles in Baidu academic
[KHUSEN SHIRINOVICH GAFFOROV]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[KHUSEN SHIRINOVICH GAFFOROV]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.